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Abstract
We discuss a family of operators which commute or anti-commute with the
twisted transfer matrix of the six-vertex model at q being roots of unity,
q2N = 1. The operators commute with the Hamiltonian of the XXZ spin
chain under the twisted boundary conditions, and they are also valid for the
inhomogeneous case. For the case of the anti-periodic boundary conditions,
we show explicitly that the operators generate the sl2 loop algebra in the
sector of the total spin operator SZ ≡ N/2 (mod N). The infinite-dimensional
symmetry leads to exponentially-large spectral degeneracies, as shown for the
periodic boundary conditions (Deguchi T, Fabricius K and McCoy B M 2001
J. Stat. Phys. 102 701). Furthermore, we derive explicitly the sl2 loop algebra
symmetry for the periodic XXZ spin chain with an odd number of sites in the
sector SZ ≡ N/2 (mod N) when q is a primitive Nth root of unity with N
odd. Interestingly, in the case of N = 3, various conjectures of combinatorial
formulae for the XXZ spin chain with odd sites have been given by Stroganov
and other authors. We also note a connection to the spectral degeneracies of
the eight-vertex model.

PACS numbers: 75.10.Jm, 75.10.Pq, 05.50.+q

1. Introduction

The finite-size spectrum of the XXZ spin chain [1, 2] under twisted boundary conditions has
attracted much interest recently and has been studied numerically or analytically such as by
the Bethe ansatz [3–8]. The XXZ Hamiltonian defined on a ring of L sites is given by

HXXZ = J

L∑
j=1

(
σX

j σX
j+1 + σY

j σ Y
j+1 + �σZ

j σZ
j+1

)
. (1)
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Here σα
j for α = X, Y,Z denotes the Pauli matrix defined on the j th site. Under the periodic

boundary conditions we have σα
L+1 = σα

1 for any α. We now introduce the twisted boundary
conditions by

σ±
L+1 = exp(±i�)σ±

1 σZ
L+1 = σZ

1 . (2)

We call the parameter � the twist angle.
There are several physical applications of twisted boundary conditions. The twist angle

corresponds to the magnetic flux threaded through the ring [9]. Taking the variation of
eigenvalues under changes of the flux [10], the effective mass has been evaluated exactly for
the many-body system of interacting fermions or bosons in one dimension which is equivalent
to the XXZ spin chain [4]. The finite-size spectrum of the XXZ spin chain under the twisted
boundary conditions has also been studied from the viewpoint of the finite-size analysis of
conformal field theories [3]. Associated with the variation of the ground-state energy, the
flows of excited states have been numerically investigated with respect to the twist angle
[3, 4, 6, 7]. In the spectral flows, we find several level crossings with large degeneracy.
However, it has not been discussed explicitly what kind of symmetry operators correspond to
the spectral degeneracies. The question should be interesting in particular from the viewpoint
of the violation of the level non-crossing rule as discussed by Heilmann and Lieb [11].

Recently, it has been found that the symmetry of the XXZ spin chain becomes enhanced
at roots of unity. The sl2 loop algebra commutes with the XXZ Hamiltonian under the periodic
boundary conditions, and the infinite-dimensional algebra leads to many spectral degeneracies
whose dimensions increase exponentially with respect to the system size [12]. Let us introduce
the parameter q through the XXZ anisotropy � as

� = q + q−1

2
. (3)

It is shown that the generators of the sl2 loop algebra commute or anti-commute with the
transfer matrix of the six-vertex model when q2N = 1, and all the defining relations of the
sl2 loop algebra are explicitly derived for the case in the sector SZ ≡ 0 (mod N). Here SZ

denotes the Z component of the total spin operator. Several aspects of the sl2 loop algebra
symmetry of the XXZ spin chain have been studied [13–19]. In particular, its connection to
the spectral degeneracies of the transfer matrix of the eight-vertex model has been discussed
[16, 17]. There are also some relevant papers [20, 21].

The purpose of this paper is to formulate a family of operators commuting with the XXZ
Hamiltonian with twisted boundary conditions. They may explain the level crossings observed
in the spectral flows with respect to the twist angle. Here we generalize the approach given in
[12], and give some extended results. As an illustration, we show that when � = π and q is
a primitive 2N th root of unity, the operators commuting with the twisted XXZ Hamiltonian
generate the sl2 loop algebra for the sector SZ = N/2 (mod N). Furthermore, in the sector
SZ = N/2 (mod N), we explicitly show the defining relations of the sl2 loop algebra for the
case of the periodic boundary conditions where L is odd and q is a primitive Nth root of unity
with odd N. When N = 3, it is exactly the case in which various combinatorial formulae were
discussed recently [22–25].

The content of the paper consists of the following: in section 2 we review the sl2
loop algebra symmetry of the periodic XXZ spin chain [12]. In section 3 we introduce the
transfer matrix of the six-vertex model under twisted boundary conditions. We also discuss
some useful techniques such as the gauge transformation and the crossing symmetry. In
section 4 we show commutation relations of the twisted transfer matrix with some powers
of the quantum group generators, which are fundamental in the paper. We also show those
of the inhomogeneous case. In section 5 we discuss operators commuting with the twisted
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transfer matrix when q is a root of unity. We also discuss the special cases where we can
explicitly check the defining relations of sl2 loop algebra. Finally we note a connection to the
eight-vertex model.

2. The loop algebra symmetry of the periodic XXZ spin chain

Let us review the sl2 loop algebra symmetry of the XXZ spin chain under the periodic boundary
conditions and introduce the quantum group Uq(sl2). The generators S± and SZ satisfy the
defining relations

[S+, S−] = q2SZ − q−2SZ

q − q−1
[SZ, S±] = ±S± (4)

with the comultiplication � given by

�(S±) = S± ⊗ q−SZ

+ qSZ ⊗ S± �(SZ) = SZ ⊗ I + I ⊗ SZ. (5)

Here, the parameter q is generic. In fact, we may consider Uq(L(sl2)), i.e., the q analogue
of the universal enveloping algebra of the sl2 loop algebra. For simplicity, however, we only
consider Uq(sl2) in the paper.

Let V denote a two-dimensional vector space over C. On the Lth tensor product space
V ⊗L, the generators S± and SZ are given by

qSZ = qσZ/2 ⊗ · · · ⊗ qσZ/2

(6)

S± =
L∑

j=1

qσZ/2 ⊗ · · · ⊗ qσZ/2 ⊗ σ±
j ⊗ q−σZ/2 ⊗ · · · ⊗ q−σZ/2 =

L∑
j=1

S±
j .

Here S±
j denotes the jth term in the sum (6). Considering the automorphism of Uq(L(sl2)),

we introduce the following operators:

T ± =
L∑

j=1

q−σZ/2 ⊗ · · · ⊗ q−σZ/2 ⊗ σ±
j ⊗ qσZ/2 ⊗ · · · ⊗ qσZ/2 =

L∑
j=1

T ±
j . (7)

Let us denote by S±(n) and T ±(n) the following operators:

S±(n) = (S±)n/[n]! T ±(n) = (T ±)n/[n]!. (8)

Here n is a positive integer, and [n] and [n]! denote the q-integer [n] = (qn − q−n)/(q − q−1)

and the q-factorial [n]! = [n][n − 1] · · · [1], respectively. Then, we have

S±(n) =
∑

1�j1<···<jn�L

q
n
2 σZ ⊗ · · · ⊗ q

n
2 σZ ⊗ σ±

j1
⊗ q

(n−2)

2 σZ

⊗ · · · ⊗ q
(n−2)

2 σZ ⊗ σ±
j2

⊗ q
(n−4)

2 σZ ⊗ · · · ⊗ σ±
jn

⊗ q− n
2 σZ ⊗ · · · ⊗ q− n

2 σZ

(9)

T ±(n) =
∑

1�j1<···<jn�L

q− n
2 σZ ⊗ · · · ⊗ q− n

2 σZ ⊗ σ±
j1

⊗ q− (n−2)

2 σZ

⊗ · · · ⊗ q− (n−2)

2 σZ ⊗ σ±
j2

⊗ q− (n−4)

2 σZ ⊗ · · · ⊗ σ±
jn

⊗ q
n
2 σZ ⊗ · · · ⊗ q

n
2 σZ

. (10)

Let the symbol τ6V (v) denote the transfer matrix of the six-vertex model. We now take the
parameter q as a root of unity. We consider the limit of sending q to a root of unity: q2N = 1.
Then we can show the (anti) commutation relations [12] in the sector of SZ ≡ 0 (mod N)

S±(N)τ6V (v) = qNτ6V (v)S±(N) T ±(N)τ6V (v) = qNτ6V (v)T ±(N). (11)
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Since the XXZ Hamiltonian HXXZ is given by the logarithmic derivative of the transfer matrix,
we have in the sector SZ ≡ 0 (mod N)

[S±(N),HXXZ] = [T ±(N),HXXZ] = 0. (12)

Let us now consider the algebra generated by the operators [12]. When q is a primitive
2N th root of unity with N even, or a primitive Nth root of unity with N odd, we consider the
following identification [12]:

E+
0 = S+(N) E−

0 = S−(N) E+
1 = T −(N) E−

1 = T +(N) H0 = −H1 = 2

N
SZ.

(13)

Using the automorphism

θ
(
E±

0

) = E±
1 θ(H0) = H1 (14)

we may take the following identification:

E+
0 = T −(N) E−

0 = T +(N) E+
1 = S+(N) E−

1 = S−(N) −H0 = H1 = 2

N
SZ.

(15)

When q is a primitive 2N th root of unity with N odd, we may put as follows:

E0 = iT −(N) E1 = iS+(N) F0 = iT +(N) F1 = iS−(N) −H0 = H1 = 2

N
SZ.

(16)

It is shown in [12] that the operators E±
j , Hj for j = 0, 1, satisfy the defining relations of the

algebra U(L(sl2)). They are given explicitly by the following:

H0 + H1 = 0 [Hi,Ej ] = aijEj [Hi, Fj ] = −aijFj (i, j = 0, 1) (17)

[Ei, Fj ] = δijHj (i, j = 0, 1) (18)

[Ei, [Ei, [Ei,Ej ]]] = 0 [Fi, [Fi, [Fi, Fj ]] = 0 (i, j = 0, 1, i �= j). (19)

Here, the Cartan matrix (aij ) of A
(1)
1 is defined by(

a00 a01

a10 a11

)
=

(
2 −2

−2 2

)
. (20)

Relations (17) hold for generic q, while the higher Serre relations (19) hold if q is a
primitive 2N th root of unity or a primitive Nth root of unity with N odd [12, 26]. Relation
(18) holds if q is a primitive 2N th root of unity with N even or a primitive Nth root of unity
with N odd. When q is a primitive 2N th root of unity with N odd, we take the identification
(16) with the imaginary factors.

3. Twisted transfer matrix of the six-vertex model

3.1. Boltzmann weights

Let us consider the configuration around the vertex as shown in figure 1. Variables a, b, c and
d are defined on the edges at the vertex, and they take value 1 or 2. The value 1 corresponds
to a polarization vector that is in the upward or rightward direction, and the value 2 to a
polarization vector in the downward or leftward direction. We assign the Boltzmann weight
Xac

bd(u) to the configuration in figure 1. The weight vanishes unless a + c = b + d, which we
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b

d

a

c

Figure 1. Vertex configuration for the Boltzmann weight Xac
bd (u). The spectral parameter u

corresponds to the angle between the two lines b to c and d to a, which is important to the
Yang–Baxter equation (25).

call the ‘ice rule’ or the ‘charge conservation’. All the nonzero Boltzmann weights are given
by

X11
11(u) = X22

22(u) = sinh(2η + u) X12
21(u) = X21

12(u) = sinh u
(21)

X12
12(u) = X21

21(u) = sinh 2η.

Here q = exp(2η), and u is the spectral parameter.
We define operators Xj(u) for j = 0, 1, . . . , L − 1 by

Xj(u) =
∑

a,b,c,d=1,2

Xac
bd(u)I0 ⊗ I1 ⊗ · · · ⊗ Ij−1 ⊗ Eab

j ⊗ Ecd
j+1 ⊗ Ij+2 ⊗ · · · ⊗ IL (22)

where I denotes the identity matrix and Eab denotes the matrix

(Eab)c,d = δa,cδb,d for c, d = 1, 2. (23)

It is easy to show that the operators Xj(u) constructed from the Boltzmann weights (21)
satisfy the Yang–Baxter equation in the following:

Xj(u)Xj+1(u + v)Xj (v) = Xj+1(v)Xj (u + v)Xj+1(u). (24)

In terms of the Boltzmann weights the operator relation (24) is written as follows:∑
α,β,γ

Xa1a2
αγ (u)X

γa3
βb3

(u + v)X
αβ

b1b2
(v) =

∑
α,β,γ

X
a2a3
βα (v)X

a1β

b1γ
(u + v)X

γα

b2b3
(u). (25)

3.2. The six-vertex transfer matrix with the twisted boundary conditions

Recall that the operators Xj(u) are acting on the tensor product V ⊗(L+1) = V0 ⊗V1 ⊗· · ·⊗VL.
We now define the twisted transfer matrix of the six-vertex model by

τ(u;φ) = tr0
(
qφσZ

0 XL−1(u) · · · X1(u)X0(u)
)

(26)

where the symbol tr0 denotes the trace over the 0th space V0.
The logarithmic derivative of the twisted transfer matrix leads to the XXZ Hamiltonian

HXXZ(φ) under the twisted boundary conditions

sinh 2η × d

du
log τ(u;φ)|u=0 =

L−1∑
j=1

(
2σ +

j σ−
j+1 + 2σ−

j σ +
j+1 + cosh 2ησZ

j σZ
j+1

)

+ q−2φ2σ +
Lσ−

1 + q2φ2σ−
L σ +

1 + cosh 2ησZ
L σZ

1 + L cosh 2η

= HXXZ(φ)/J + L� (27)
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where � = cosh 2η and the twist angle � is related to φ through the relation

q2φ = exp(i�). (28)

We should note that the twisted transfer matrix (26) is different from that of [12]: the
logarithmic derivative of the transfer matrix T DFM(v;φ) of [12] leads to the XXZ Hamiltonian
under the periodic boundary conditions for any φ, while that of (26) gives the twisted XXZ
Hamiltonian (27).

Let the symbol (12···L) denote the shift operator defined by

(12···L)e1 ⊗ · · · ⊗ eL = eL ⊗ e1 ⊗ · · · ⊗ eL−1. (29)

Then, the twisted transfer matrix τ(u;φ) gives the twisted shift operator τ(0;φ) =
sinhL 2η(φ), where (φ) is defined by

(φ) = qφσZ
1 (12···L) = (12···L)qφσZ

L . (30)

3.3. Gauge transformations and the crossing symmetry

We introduce the following transformation on the Boltzmann weights of the six-vertex model
[27]:

Xac
bd(u) → X̃

ac

bd(u) = εa+b exp (κ(a + b − c − d)u/2) Xac
bd(u). (31)

Here κ is arbitrary and ε = ±1. We can show that the transformed weights X̃ac
bd(u) satisfy

the Yang–Baxter equation (25) if Xac
bd(u) satisfy it. We call (31) a gauge transformation. Let

X̃j (u) denote the operator defined by (22) with the Xac
bd(u) replaced with X̃ac

bd(u). Then, X̃j (u)

also satisfy the Yang–Baxter equation (24).
Let us discuss the gauge transformation (31) with ε = 1. It has two important properties.

First, the transfer matrix τ(u;φ) is invariant under the gauge transformation due to the charge
conservation. Second, when κ = ±1, X̃j (u) can be expressed in terms of the generator
of the Temperley–Lieb algebra [27]. Let X±ac

bd(u) denote the transformed weight X̃ac
bd(u)

with κ = ±1, respectively. In terms of the Boltzmann weights, we have the following
decomposition [27]:

X±ac
bd(u) = sinh(u + 2η)δa,bδc,d + sinh ur±

a r±
b δa,c̄δb,d̄ . (32)

Here ā denotes the conjugate of a, which is defined by 1̄ = 2 and 2̄ = 1. The quantities
r±
j (j = 1, 2) are defined by [28]

r±
1 = i exp(∓η) r±

2 = −i exp(±η). (33)

The weights X
±a,c
b,d (u) have the following symmetry [28]:

X
±a,c

b,d (u) = −r±
b r±

c̄ X
±b̄,a

d,c̄(−2η − u) = −r±
a r±

d̄
X

±c,d̄
ā,b(−2η − u). (34)

We call it the crossing symmetry.

3.4. The Temperley–Lieb decomposition of Xj(u)

Let us introduce the following operators:

U±
j =

∑
a,b,c,d=1,2

r±
a r±

b δa,c̄δb,d̄ I0 ⊗ I1 ⊗ · · · ⊗ Ij−1 ⊗ Eab
j ⊗ Ecd

j+1 ⊗ Ij+2 ⊗ · · · ⊗ IL. (35)

The U±
j satisfy the defining relations of the Temperley–Lieb algebra [29, 30]:(

U±
j

)2 = Q1/2U±
j U±

j U±
j+1U

±
j = U±

j U±
j+1U

±
j U±

j+1 = U±
j+1 (36)
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for j = 1, 2, . . . , L − 1. Here Q1/2 is given by Q1/2 = −(q + q−1). We call U±
j the

Temperley–Lieb operators.
In terms of the Temperley–Lieb operators, the operator X±

j (u) can be expressed as
follows [30]:

X±
j (u) = sinh(u + 2η)I + sinh uU±

j . (37)

The decomposition (37) corresponds to (32) for the Boltzmann weights.
The Temperley–Lieb operators U+

j commute with the generators of Uq(sl2). We can show[
S±, U+

j

] = 0 for j = 0, 1, . . . , L − 1. It can be important, since the XXZ Hamiltonian can
be expressed in terms of U+

j and a boundary term [31].
It is known that the periodic XXZ spin chain does not commute with Uq(sl2). In fact,

the generators S± do not commute with the periodic XXZ Hamiltonian, since they are not
compatible with the periodic boundary conditions. When q is a root of unity, however, some
powers of S± can commute with it [31]. As a matter of fact, the observation can be developed
much further [12]. We first note that U+

j commute with S± while they do not with T ±, and U−
j

commute with T ± while they do not with S±. When q2N = 1, we can show that the transfer
matrix commutes with S±(N) and T ±(N) simultaneously, and they generate the sl2 loop algebra
[12].

4. Relations of the transfer matrix for q generic

4.1. Decomposition of the transfer matrix

Let us consider the gauge transformations (31) with κ = ±1 and ε = 1. Due to the charge
conservation, they do not change any of the matrix elements of the transfer matrix (26). Thus,
we have

τ(u;φ) = tr0
(
qφσZ

0 X±
L−1(u) · · · X±

1 (u)X±
0 (u)

)
. (38)

We denote by τ±(u;φ) the right-hand side of (38). Putting the decomposition (37) for X±
0 (u)

into τ±(u;φ), and making use of the crossing symmetry (34), we can show the following:

τ(u;φ) = (φ)X±
LL(u) + X±

RR(u)(φ)−1 (39)

where the symbols X±
LL(u) and X±

RR(u) are given by

X±
LL(u) = sinh(u + 2η)X±

L−1(u) · · · X±
2 (u)X±

1 (u)
(40)

X±
RR(u) = (−1)L sinh(u)X±

1 (−2η − u)X±
2 (−2η − u) · · · X±

L−1(−2η − u).

We remark that X+
j (u) commute with S± while X−

j (u) commute with T ±. When φ = 0, (39)
is reduced to that of the periodic one [12].

4.2. Transformations of the twisted shift operator

We can show the following relations of (S±)n and (T ±)n for generic q:

(φ)(S±)n(φ)−1 = q−nσZ
1
{
(S±)n + q∓(n−1)[n](S±)n−1S±

1 (q2(SZ±n±φ) − 1)
}

(φ)−1(S±)n(φ) = qnσZ
L

{
(S±)n + q±(n−1)[n](S±)n−1S±

L (q−2(SZ±n±φ) − 1)
}

(41)
(φ)(T ±)n(φ)−1 = qnσZ

1
{
(T ±)n + q±(n−1)[n](T ±)n−1T ±

1 (q−2(SZ±n∓φ) − 1)
}

(φ)−1(T ±)n(φ) = q−nσZ
L

{
(T ±)n + q∓(n−1)[n](T ±)n−1T ±

L (q2(SZ±n∓φ) − 1)
}
.
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Let us briefly discuss the derivation. We first consider the following:

(φ)(S±)n(φ)−1 = ((φ)S±(φ)−1)n

= {(
S± − S±

1

)
q−σZ

1 + q2φS±
1 q2SZ−σZ

1
}n

. (42)

Here we denote by A and q±2φB the first and second terms of the right-hand side, respectively.
Then we can show the following:

(A + q±2φB)n = An + q±2φ

n−1∑
j=0

An−1−jBAj . (43)

Thus, we can derive expression (41) through the following:

An = q−nσZ
1
(
S± − S±

1

)n = q−nσZ
1
(
(S±)n − q∓(n−1)[n](S±)n−1S±

1

)
(44)

An−1−jBAj = q±2(j+1)q−nσZ
1 (S±)n−1S±

1 q2SZ

.

4.3. Relations of the twisted transfer matrix

Using relations (41), we can derive the following relations of the twisted transfer matrix for
generic q:

(S±)nτ (u;φ)=τ(u;φ + n)(S±)n + q±(n−1)[n](φ + n)(S±)n−1S±
L (q−2(SZ±n±φ) − 1)X+

LL(u)

+ q∓(n−1)[n]X+
RR(u)(φ + n)−1(S±)n−1S±

1 (q2(SZ±n±φ) − 1)

(T ±)nτ (u;φ) = τ(u;φ−n)(T ±)n + q∓(n−1)[n](φ−n)(T ±)n−1T ±
L (q2(SZ±n∓φ) − 1)X−

LL(u)

+ q±(n−1)[n]X−
RR(u)(φ − n)−1(T ±)n−1T ±

1 (q−2(SZ±n∓φ) − 1).

(45)

Here we note that S± commute with X+
LL(u) and X+

RR(u), and also that T ± commute
with X−

LL(u) and X−
RR(u). Some different forms of the commutation relations are given in

appendix A.
We remark that some relations of S±(N) with the transfer matrix have been investigated

[32].

4.4. Inhomogeneous case of the twisted transfer matrix

We define the inhomogeneous transfer matrix of the six-vertex model under the twisted
boundary conditions by

τ(u;φ; {wj }) = tr0
(
qφσZ

0 XL−1(u − wL−1
) · · · X1(u − w1)X0(u − w0)). (46)

Here wj are called inhomogeneous parameters. The twisted transfer matrix (46) is called
inhomogeneous. Under the gauge transformation (31) with ε = 1, τ(u;φ; {wj }) is mapped
to τ̃ (u;φ; {wj }) as follows:

τ(u;φ; {wj }) = V (κ)τ̃ (u;φ; {wj })V (κ)−1 (47)

where V (κ) is given by the diagonal matrix

(V (κ))
a1,a2,...,aL

b1,b2,...,bL
= exp


κ

L∑
j=1

wjaj


 δa1,b1δa2,b2 · · · δaL,bL

. (48)
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Let τ±(u;φ; {wj }) denote the transformed transfer matrices τ̃ (u;φ; {wj }) with κ = ±1,
respectively. We write V (±1) by V ±. We thus have

τ(u;φ; {wj }) = V ±τ±(u;φ; {wj })V ∓. (49)

We therefore define S̃± and T̃
±

by

S̃± = V +S±V − T̃
± = V −T ±V +. (50)

The transfer matrices τ±(u;φ; {wj }) can be decomposed as

τ±(u;φ; {wj }) = (φ)X±
LL(u; {wj }) + X±

RR(u; {wj })(φ)−1 (51)

where X±
LL(u; {wj }) and X±

RR(u; {wj }) are given by

X±
LL(u; {wj }) = sinh(u + 2η − w0)X

±
L−1(u − wL−1) · · · X±

1 (u − w1)

X±
RR(u; {wj }) = (−1)L sinh(u − w0)X

±
1 (−2η − u + w1) (52)

×X±
2 (−2η − u + w2) · · · X±

L−1(−2η − u + wL−1).

In the same way as (45) we can show

(S±)nτ +(u;φ; {wj }) = τ +(u;φ + n; {wj })(S±)n

+ q±(n−1)[n](φ + n)(S±)n−1S±
L (q−2(SZ±n±φ) − 1)X+

LL(u; {wj })
+ q∓(n−1)[n]X+

RR(u; {wj })(φ + n)−1(S±)n−1S±
1 (q2(SZ±n±φ) − 1)

(53)
(T ±)nτ−(u;φ; {wj }) = τ−(u;φ − n; {wj })(T ±)n

+ q∓(n−1)[n](φ − n)(T ±)n−1T ±
L (q2(SZ±n∓φ) − 1)X−

LL(u; {wj })
+ q±(n−1)[n]X−

RR(u; {wj })(φ − n)−1(T ±)n−1T ±
1 (q−2(SZ±n∓φ) − 1).

Through relation (49) we can derive commutation or anti-commutation relations for the
inhomogeneous twisted transfer matrix τ(u;φ; {wj }). Let |k〉〉 denote such a vector with
SZ = k. Then we have
(S̃±)nτ (u;φ; {wj })|k〉〉 = τ(u;φ + n; {wj })(S̃±)n|k〉〉 when q2(k±n±φ) = 1

(T̃
±
)nτ (u;φ; {wj })|k〉〉 = τ(u;φ − n; {wj })(T̃ ±

)n|k〉〉 when q2(k±n∓φ) = 1.
(54)

We note that for the case of φ = 0, the inhomogeneous result was addressed at the end of [12].

5. The loop algebra symmetry

5.1. Operators commuting with the twisted transfer matrix

Let us assume that q is a root of unity q2N = 1. We denote by |k〉 such a vector that has a
fixed SZ value and it is equivalent to k mod N: SZ ≡ k (mod N). Here k is an integer or a
half-integer. Let m and n be two non-negative integers such that m ≡ n (mod N). Then we
have
(S±)m(T ∓)nτ (u;φ)| ± n ∓ φ〉 = τ(u;φ + m − n)(S±)m(T ∓)n| ± n ∓ φ〉
(T ±)m(S∓)nτ (u;φ)| ± n ± φ〉 = τ(u;φ − m + n)(T ±)m(S∓)n| ± n ± φ〉. (55)

Relations (55) are derived from (45). We note that when m = n expressions (55) are also valid
for the case of q generic.

Let us denote by θ(n) the least non-negative integer which is equivalent to n mod N. In
the sector SZ ≡ � (mod N) we have commutation relations Xτ(u, p) = τ(u, p)X, where X
are given by

(S±)θ(±�+p)(T ∓)θ(±�+p) (T ±)θ(±�−p)(S∓)θ(±�−p) (56)
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and commutation or anti-commutation relations Xτ(u, p) = qNτ(u, p)X, where X are given
by

(S±)θ(±�+p)+N(T ∓)θ(±�+p) (S±)θ(±�+p)(T ∓)θ(±�+p)+N

(T ±)θ(±�−p)+N(S∓)θ(±�−p) (T ±)θ(±�−p)(S∓)θ(±�−p)+N .
(57)

Here we assume that � and p are such integers or half-integers that � ± p are integers.
In the sector SZ ≡ � (mod N), the operators (56) and (57) commute with the twisted

XXZ Hamiltonian HXXZ(φ) with φ ≡ p (mod N). We recall that HXXZ(φ) is given by the
logarithmic derivative of the twisted transfer matrix τ(u;φ). For instance, we can show that
S±(N) and T ±(N) commute with the anti-periodic XXZ Hamiltonian in the sector SZ ≡ N/2
(mod N), when q is a primitive 2N th root of unity. Putting � = N/2 and p = N/2 in (57), we
have

[S±(N),HXXZ(N/2)] | N/2〉 = [T ±(N),HXXZ(N/2)] | N/2〉 = 0. (58)

5.2. Symmetry operators for the inhomogeneous twisted transfer matrix

From equations (54), in the sector SZ ≡ � (mod N), we have the commutation relations
Xτ(u;p; {wj }) = τ(u;p; {wj })X where X are given by

(S̃±)θ(±�+p)(T̃
∓
)θ(±�+p) (T̃

±
)θ(±�−p)(S̃∓)θ(±�−p) (59)

and commutation or anti-commutation relations Xτ(u;p; {wj }) = qNτ(u;p; {wj })X where
X are given by

(S̃±)θ(±�+p)+N(T̃
∓
)θ(±�+p) (S̃±)θ(±�+p)(T̃

∓
)θ(±�+p)+N

(T̃
±
)θ(±�−p)+N(S̃∓)θ(±�−p) (T̃

±
)θ(±�−p)(S̃∓)θ(±�−p)+N .

(60)

Here we recall that � and p are such integers or half-integers that � ± p are integers.

5.3. The sl2 loop algebra at � = π

Let us discuss the anti-periodic boundary conditions or the twisted boundary conditions with
� = π . In the sector SZ ≡ N/2 (mod N), we can show explicitly the defining relations of the
sl2 loop algebra. We consider two cases: (i) q is a primitive 2N th root of unity with N even (L
is even); (ii) q is a primitive 2N th root of unity with N odd (L is odd).

Let us consider the formula for generic q

[S+(N), S−(N)] =
N∑

j=1

S−(N−j)S+(N−j)

[j ]!

j−1∏
k=0

q2SZ−k − q−2SZ+k

q − q−1
. (61)

Taking the limit q2N → 1 in the sector SZ ≡ N/2(mod N), we have the following for the
cases (i) and (ii):

[S+(N), S−(N)] = [T +(N), T −(N)] = 2

N
SZ. (62)

We thus take the following identification for the cases (i) and (ii):

E+
0 = T −(N) E−

0 = T +(N) E+
1 = S+(N) E−

1 = S−(N) −H0 = H1 = 2

N
SZ.

(63)

Then, we can show that they satisfy the defining relations of the sl2 loop algebra: (17), (18)
and (19).
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5.4. The sl2 loop algebra symmetry of the periodic XXZ spin chain with L odd

As an application of the (anti-)commutation relations (45), we discuss the case of the periodic
boundary conditions with L odd, where q is a primitive Nth root of unity with N odd. Taking
the same identification (63) of the generators, we can show explicitly that they satisfy the
defining relations of the sl2 loop algebra in the sector SZ ≡ N/2 (mod N).

For sectors other than SZ ≡ N/2 (mod N), we have not explicitly shown the defining
relations of the sl2 loop algebra. However, we have a conjecture that some of the operators
given in (57) should generate the sl2 loop algebra. By a different method, we can show
that the spectral degeneracies related to the sl2 loop algebra also exist in sectors other than
SZ ≡ N/2 (mod N). We can derive it from the general result on the spectral degeneracy of
the eight-vertex model [16] and through the XXZ limit of the XYZ spin chain. Some details
should be discussed elsewhere.
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Appendix. Commutation or anti-commuation relations

We can show the following relations for q generic:

(φ)(S±)n(φ)−1 = {
(S±)n + q∓(n−1)[n](S±)n−1S±

1 (q2(SZ±φ) − 1)
}
q−nσZ

1

(φ)−1(S±)n(φ) = {
(S±)n + q±(n−1)[n](S±)n−1S±

L (q−2(SZ±φ) − 1)
}
qnσZ

L

(64)
(φ)(T ±)n(φ)−1 = {

(T ±)n + q±(n−1)[n](T ±)n−1T ±
1 (q−2(SZ∓φ) − 1)

}
qnσZ

1

(φ)−1(T ±)n(φ) = {
(T ±)n + q∓(n−1)[n](T ±)n−1T ±

L (q2(SZ∓φ) − 1)
}
q−nσZ

L .

By using (64) we have

(S±)nτ (u;φ) = τ(u;φ + n)(S±)n − q∓(n−1)[n](S±)n−1S±
1 (q2(SZ±n±φ) − 1)(φ)X+

LL(u)

− q±(n−1)[n]X+
RR(u)(S±)n−1S±

L (q−2(SZ±n±φ) − 1)(φ)−1

(T ±)nτ (u;φ) = τ(u;φ − n)(T ±)n − q±(n−1)[n](T ±)n−1T ±
1 (q−2(SZ±n∓φ) − 1)(φ)X−

LL(u)

− q∓(n−1)[n]X−
RR(u)(T ±)n−1T ±

1 (q2(SZ±n∓φ) − 1)(φ)−1. (65)
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